195 research outputs found

    Lexicographic Max-Ordering - A Solution Concept for Multicriteria Combinatorial Optimization

    Get PDF
    In this paper we will introduce the concept of lexicographic max-ordering solutions for multicriteria combinatorial optimization problems. Section 1 provides the basic notions of multicriteria combinatorial optimization and the definition of lexicographic max-ordering solutions. In Section 2 we will show that lexicographic max-ordering solutions are pareto optimal as well as max-ordering optimal solutions. Furthermore lexicographic max-ordering solutions can be used to characterize the set of pareto solutions. Further properties of lexicographic max-ordering solutions are given. Section 3 will be devoted to algorithms. We give a polynomial time algorithm for the two criteria case where one criterion is a sum and one is a bottleneck objective function, provided that the one criterion sum problem is solvable in polynomial time. For bottleneck functions an algorithm for the general case of Q criteria is presented

    Primal and dual multi-objective linear programming algorithms for linear multiplicative programmes

    Get PDF
    Multiplicative programming problems (MPPs) are global optimization problems known to be NP-hard. In this paper, we employ algorithms developed to compute the entire set of nondominated points of multi-objective linear programmes (MOLPs) to solve linear MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs in the special case of linear MPPs by only solving one linear programme in each iteration, instead of two as the previous version indicates. We call this algorithm, which is based on Benson’s outer approximation algorithm for MOLPs, the primal objective space algorithm. Then, based on the dual variant of Benson’s algorithm, we propose a dual objective space algorithm for solving linear MPPs. The dual algorithm also requires solving only one linear programme in each iteration. We prove the correctness of the dual algorithm and use computational experiments comparing our algorithms to a recent global optimization algorithm for linear MPPs from the literature as well as two general global optimization solvers to demonstrate the superiority of the new algorithms in terms of computation time. Thus, we demonstrate that the use of multi-objective optimization techniques can be beneficial to solve difficult single objective global optimization problems

    Operations Research Methods for Optimization in Radiation Oncology

    Get PDF
    Operations Research has a successful tradition of applying mathematical analysis to a wide range of applications, and problems in Medical Physics have been popular over the last couple of decades. The original application was in the optimal design of the uence map for a radiotherapy treatment, a problem that has continued to receive attention. However, Operations Research has been applied to other clinical problems like patient scheduling, vault design, and image alignment. The overriding theme of this article is to present how techniques in Operations Research apply to clinical problems, which we accomplish in three parts. First, we present the perspective from which an operations researcher addresses a clinical problem. Second, we succinctly introduce the underlying methods that are used to optimize a system, and third, we demonstrate how modern software facilitates problem design. Our discussion is supported by several publications to foster continued study. With numerous clinical, medical, and managerial decisions associated with a clinic, operations research has a promising future at improving how radiotherapy treatments are designed and delivered

    A Characterization of Lexicographic Max-Ordering Solutions

    Get PDF
    In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering

    A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem

    Get PDF
    We present a column generation algorithm for solving the bi-objective multi-commodity minimum cost flow problem. This method is based on the bi-objective simplex method and Dantzig–Wolfe decomposition. The method is initialised by optimising the problem with respect to the first objective, a single objective multi-commodity flow problem, which is solved using Dantzig–Wolfe decomposition. Then, similar to the bi-objective simplex method, our algorithm iteratively moves from one non-dominated extreme point to the next one by finding entering variables with the maximum ratio of improvement of the second objective over deterioration of the first objective. Our method reformulates the problem into a bi-objective master problem over a set of capacity constraints and several single objective linear fractional sub-problems each over a set of network flow conservation constraints. The master problem iteratively updates cost coefficients for the fractional sub-problems. Based on these cost coefficients an optimal solution of each sub-problem is obtained. The solution with the best ratio objective value out of all sub-problems represents the entering variable for the master basis. The algorithm terminates when there is no entering variable which can improve the second objective by deteriorating the first objective. This implies that all non-dominated extreme points of the original problem are obtained. We report on the performance of the algorithm on several directed bi-objective network instances with different characteristics and different numbers of commodities

    Uncertain Data Envelopment Analysis

    Get PDF
    Data Envelopment Analysis (DEA) is a nonparametric, data driven method to conduct relative performance measurements among a set of decision making units (DMUs). Efficiency scores are computed based on assessing input and output data for each DMU by means of linear programming. Traditionally, these data are assumed to be known precisely. We instead consider the situation in which data is uncertain, and in this case, we demonstrate that efficiency scores increase monotonically with uncertainty. This enables inefficient DMUs to leverage uncertainty to counter their assessment of being inefficient. Using the framework of robust optimization, we propose an uncertain DEA (uDEA) model for which an optimal solution determines 1) the maximum possible efficiency score of a DMU over all permissible uncertainties, and 2) the minimal amount of uncertainty that is required to achieve this efficiency score. We show that the uDEA model is a proper generalization of traditional DEA and provide a first-order algorithm to solve the uDEA model with ellipsoidal uncertainty sets. Finally, we present a case study applying uDEA to the problem of deciding efficiency of radiotherapy treatments

    Routing Trains Through Railway Junctions: A New Set Packing Approach

    Get PDF

    The Lexicographic Tolerable Robustness Concept for Uncertain Multi-Objective Optimization Problems:A Study on Water Resources Management

    Get PDF
    In this study, we introduce a robust solution concept for uncertain multi-objective optimization problems called the lexicographic tolerable robust solution. This approach is advantageous for the practical implementation of problems in which the solution should satisfy priority levels in the objective function and the worst performance vector of the solution obtained by the proposed concept is close to a reference point of the considered problem, within an acceptable tolerance threshold. Important properties of the solution sets of this introduced concept as well as an algorithm for finding such solutions are presented and discussed. We provide the implementation of the proposed lexicographic tolerable robust solution to improve understanding for practitioners by relying on the data of the water resources master plan for Serbia from Simonovic, 2009. Moreover, we are also concerned with the method of updating a desirable solution for fitting with the preferences when compromising of the multiple groups of decision makers is needed

    Primal and Dual Algorithms for Optimization over the Efficient Set

    Get PDF
    Optimisation over the efficient set of a multi-objective optimisation problem is a mathematical model for the problem of selecting a most preferred solution that arises in multiple criteria decision making to account for trade-offs between objectives within the set of efficient solutions. In this paper we consider a particular case of this problem, namely that of optimising a linear function over the image of the efficient set in objective space of a convex multi-objective optimisation problem. We present both primal and dual algorithms for this task. The algorithms are based on recent algorithms for solving convex multi-objective optimisation problems in objective space with suitable modifications to exploit specific properties of the problem of optimisation over the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective linear programme. We then extend them to be able to solve problems with an underlying convex multiobjective optimisation problem.We compare the new algorithms with several state of the art algorithms from the literature on a set of randomly generated instances to demonstrate that they are considerably faster than the competitors
    • …
    corecore